Nekut, A., Connerney, J.E.P., & Kuckes, A.F. (1977). Deep crustal electrical conductivity: Evidence for water in the lower crust. Geophys. Res. Lett., 4, 239 - 242.
Açuna, M.H., Ness, N.F., & Connerney, J.E.P. (1980). The magnetic field of Saturn: Further studies of the Pioneer 11 observations. J. Geophys. Res., 85, 5675 - 5678.
Connerney, J.E.P., & Kuckes, A.F. (1980). Deep crustal electrical conductivity in the Adirondacks. J. Geophys. Res., 85, 2603 - 2614.
Connerney, J.E.P., & Kuckes, A.F., (1980). Gradient analysis of Geomagnetic fluctuations in the Adirondacks. J. Geophys. Res., 85, 2615 - 2624.
Açuna, M.H., Connerney, J.E.P., & Ness, N.F. (1981). Saturn's magnetic field: Topology and models. Nature, 292, 721 - 724.
Behannon, K.W., Connerney, J.E.P., & Ness, N.F. (1981). Saturn's magnetic tail: Structure and dynamics. Nature, 292, 753 - 755.
Connerney, J.E.P. (1981) Azimuthal magnetic field at Jupiter: Comment on the paper by J.L. Parish, C.K. Goertz, and M.F. Thomsen, J. Geophys. Res., 86, 7796 - 7797.
Connerney, J.E.P. (1981). The magnetic field of Jupiter: A generalized inverse approach. J. Geophys. Res., 86, 7679 - 7693.
Connerney, J.E.P., Açuna, M.H. & Ness, N.F. (1981). Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res., 86, 8370 - 8384.
Connerney, J.E.P., Açuna, M.H., & Ness, N.F. (1981). Saturn's ring current and inner magnetosphere. Nature, 292, 724 - 726.
Ness, N.F., Açuna, M.H., Lepping, R.P., Connerney, J.E.P., Behannon, K.W., Burlaga, L.F., & Neubauer, F.M. (1981). Preliminary results at Saturn from the magnetic field experiment on Voyager 1. Science, 212, 211 - 217.
Connerney, J.E.P., & Açuna, M.H. (1982). Jovimagnetic secular variation. Nature, 297, 313 - 315.
Connerney, J.E.P., Açuna, M.H. & Ness, N.F. (1982). N.F. Voyager 1 assessment of Jupiter's planetary magnetic field. J. Geophys. Res., 86, 3623 - 3627.
Connerney, J.E.P., Ness, N.F., & Açuna, M.H. (1982). Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations. Nature, 298, 44 - 46.
Ness, N.F., Açuna, M.H., Behannon, K.W., Burlaga, L.F., Connerney, J.E.P., Lepping, R.P., & Neubauer, F.M. (1982). Magnetic field studies by Voyager 2: Preliminary results at Saturn. Science, 215, 558 - 563.
Açuna, M.H., Connerney, J.E.P., & Behannon, K.W. (1983). Magnetic field and magnetosphere. In A.J. Dessler (Ed.), Physics of the Jovian Magnetosphere (pp. 1 – 50). Cambridge University Press.
Açuna, M.H., Connerney, J.E.P., & Ness, N.F. (1983). The Z3 zonal harmonic model of Saturn's magnetic field: Analyses and implications. J. Geophys. Res., 88, 8771 - 8778.
Connerney, J.E.P., Açuna, M.H., & Ness, N.F. (1983). Currents in Saturn's magnetosphere. J. Geophys. Res., 88, 8779 - 8789.
Kaiser, M.L., Connerney, J.E.P., & Desch, M.D. (1983). Atmospheric storm explanation of Saturnian Electrostatic Discharges. Nature, 303, 50 – 53.
Connerney, J.E.P., Açuna, M.H., & Ness, N.F. (1984). The Z3 model of Saturn's magnetic field and the Pioneer 11 Vector Helium Magnetometer observations. J. Geophys. Res., 89, 7541 - 7544.
Connerney, J.E.P., Davis, Jr., L., & Chenette, D.L. (1984). Magnetic field models. In T. Gehrels and M. S. Matthews (Eds.), Saturn (pp. 354 – 377). University of Arizona Press.
Connerney J.E.P., & Waite, J.H. (1984). New model of Saturn's ionosphere with an influx of water from the rings. Nature, 312,136 - 138.
Kaiser, M.L., Desch, M.D. & Connerney, J.E.P. (1984). Saturn's ionosphere: Inferred electron densities. J. Geophys. Res., 89,2371 - 2376.
Connerney, J.E.P., Açuna, M.H. & Ness, N.F. (1985). Reply to Comments of Davis and Smith. J. Geophys. Res., 90, 4465, 1985.
Connerney, J.E.P. (1986). A magnetic connection for Saturn's rings and atmosphere. Geophys. Res. Lett., 13, 773 - 776.
Connerney, J.E.P. (1986). Saturn: A unique magnetosphere/ionosphere/ring interaction. In B.M. Pedersen, D. LeQueau, A. Roux, and A. Saint-Marc (Eds.), Comparative Study of Magnetospheric Systems (pp. 245 – 251). Toulouse, France.
Desch, M.D., Connerney, J.E.P., & Kaiser, M.L. (1986). The rotation period of Uranus. Nature, 322, 42 - 43.
McKibben, R.B., & Connerney, J.E.P. (1986). Pioneer 11 observations of the effects of Ganymede and Callisto on Jupiter's trapped radiation. J. Geophys. Res., 91, 10975 - 10988.
Ness, N.F., Açuna, M.H., Behannon, K.W., Burlaga, L.F., Connerney, J.E.P., Lepping, R.P., & Neubauer, F.M. (1986). Magnetic fields at Uranus. Science, 233, 85 - 89.
Connerney, J.E.P. (1987). The magnetospheres of Jupiter, Saturn, and Uranus. Revs. Geophys. Space Phys., 25, No. 3, 615 - 638.
Connerney, J.E.P., Açuna, M.H. & Ness, N.F. (1987). The magnetic field of Uranus. J. Geophys. Res., 92, 15329 - 15336.
Northrop, T.G., & Connerney, J.E.P. (1987). A micrometeorite erosion model and the age of Saturn's rings. Icarus, 70, 124 - 137.
Açuna, M.H., Connerney, J.E.P. & Ness, N.F. (1988). Implications of the GSFC-Q3 model for trapped particle motion. J. Geophys. Res., 93, 5505 - 5512.
Connerney, J.E.P., & Ness, N.F. (1988). Mercury's magnetic field and interior. In M. S. Matthews, C. Chapman and F. Vilas (Eds.), Mercury (pp. 494 – 513). Univ. Arizona Press.
Caudal, G., & Connerney, J.E.P. (1989). Plasma pressure in the environment of Jupiter, inferred from Voyager 1 magnetometer observations. J. Geophys. Res., 94, 15055 - 15061.
Kaiser, M.L., Desch, M.D. & Connerney, J.E.P. (1989). Radio emission from the magnetic equator of Uranus. J. Geophys. Res., 94, 2399 - 2404.
Ness, N.F., Açuna, M.H., Burlaga, L.F., Connerney, J.E.P., Lepping, R.P., & Neubauer, F.M. (1989). Magnetic fields at Neptune. Science, 246, 1473 - 1478.
Connerney, J.E.P., Açuna, M.H. & Ness, N.F. (1991). The magnetic field of Neptune. J. Geophys. Res., 96, 19023 - 19042.
Ness, N.F., Connerney, J.E.P., Lepping, R.P., Schulz, M., & Voigt, G.H. (1991). The magnetic field and magnetospheric configuration of Uranus. In J.T. Bergstralh, E.D. Miner and M.S. Matthews (Eds.), Uranus (pp. 739 – 779). Univ. Arizona Press, Tucson, Arizona.
Açuna, M.H., Connerney, J.E.P., Wasilewski, P., et. al. (1992). The Mars Observer magnetic fields investigation. J. Geophys. Res., 97, 7799 - 7814.
Connerney, J.E.P. (1992). Doing more with Jupiter's magnetic field. In H.O. Rucker and S.J. Bauer (Eds.), Planetary Radio Emissions III (pp. 13 - 33, 1992). Austrian Academy of Sciences Press, Austrian Academy of Science, Austria.
Connerney, J.E.P., Açuna, M.H., & Ness, N.F. (1992). Magnetic field of Neptune. Adv. Space Res., V12, No. 8, 239 - 248.
Connerney, J.E.P., & Desch, M.D. (1992). Comment on: Evidence of Saturn's magnetic field anomaly from Saturnian Kilometric Radiation high frequency limit. by Galopeau et al., J. Geophys. Res., 97, 8713 - 8717.
Açuna, M.H., Connerney, J.E.P., & Ness, N.F. (1993). Neptune's magnetic field: Calculation of field geometric invariants derived from the I8E1 GSFC model. J. Geophys. Res., 98, 11275 - 11284.
Connerney, J.E.P. (1993). Magnetic fields of the outer planets. J. Geophys. Res., 98, 18659 - 18679.
Connerney, J.E.P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the Foot of the Io Flux Tube in Jupiter's atmosphere. Science, 262, 1035 - 1038.
Connerney J.E.P., & Satoh, T. (1995). Three presidents. Science, 267, 1891 - 1892.
Connerney, J.E.P., Satoh, T., Baron, R., & Owen, T. (1995). The infrared signature of the Io interaction is detected in Jupiter's atmosphere. EOS, 76, No. 8, 73 - 81.
Connerney, J.E.P., Satoh, T., Baron, R. & Owen, T. (1995). Jupiter and Io: A cosmic electrical generator. Earth in Space, 7, No. 8, 6 - 7, 14.
Ness, N.F., Açuna, M.H. & Connerney, J.E.P. (1995). Neptune's magnetic field and field geometric properties. In M.S. Matthews, (Ed.) Neptune, (pp. 141 – 168). Univ. Arizona Press, Tucson, Arizona.
Satoh, T., Connerney, J.E.P., & Baron, R. (1995). Emission source model of Jupiter's H3+ aurorae. Proceedings of the 28th ISAS Lunar and Planetary Symposium, Institute for Space and Astronautical Science, Tokyo.
Baron, R., Owen, T., Connerney, J.E.P., Satoh, T., & Harrington, J. (1996). Solar wind control of Jupiter's H3+ aurorae. Icarus, 120, 437 - 442.
Clarke, J.T., Ballester, G.E., Trauger, J., et. al. (1996). Far-Ultraviolet imaging of Jupiter's aurora and the Io "footprint" with the Hubble Space Telescope Wide Field Planetary Camera 2. Science, 274, 404 - 409.
Connerney, J.E.P., Açuna, M.H., & Ness, N.F. (1996). Octupole model of Jupiter's magnetic field from Ulysses observations. J. Geophys. Res., 101, 27453 - 27458.
Connerney, J.E.P., Satoh, T., & Baron, R. (1996). Interpretation of auroral "Light Curves" with application to Jupiter's H3+ aurorae. Icarus, 122, 24 - 35.
Satoh, T., Connerney, J.E.P., & Baron, R. (1996). Emission source model of Jupiter's H3+ aurorae: A Generalized inverse analysis of images. Icarus, 122, 1 - 23.
Dulk, G.A., Leblanc, Y., Sault, R.J., Ladreiter, H.P., & Connerney, J.E.P. (1997). The radiation belts of Jupiter at 13 and 22 cm. II. The asymmetries and the magnetic field. Astronomy and Astrophysics, 319, 282 - 289.
Slavin, J.A., Owen, C.J., Connerney, J.E.P., & Christon, S.P. (1997). Mariner 10 observations of field-aligned currents at Mercury. Planet. Space. Sci., 45, 133 - 141.
Waite, J. H., Lewis, Jr., W.S., Gladstone, G.R., et. al. (1997). Outer planet ionospheres: A review of recent research and a look toward the future. Adv. Space Res., 20: (2), 243 - 252.
Açuna, M.H., Connerney, J. E. P., Wasilewski, P., et. al. (1998). Magnetic field and plasma observations at Mars: Preliminary results of the Mars Global Surveyor Mission. Science, 279, 1676 - 1680.
Clarke, J.T., Ballester, G.E., Trauger, J., et. al. (1998). HST imaging of Jupiter's UV aurora during the Galileo Mission. J. Geophys. Res., 103, 20217 - 20236.
Connerney, J.E.P., Açuna, M.H., Ness N.F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io Flux Tube footprint. J. Geophys. Res., 103, 11929 -11939.
Prange, R., Rego, D., Pallier, L., Connerney, J.E.P., Zarka, P., & Queinnec, J., (1998). Detailed study of FUV Jovian auroral features with the post-COSTAR HST Faint Object Camera. J. Geophys. Res., 103, 20195 - 20215.
Açuna, M.H., Connerney, J.E.P., Ness, N.F., et. al. (1999). Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER Experiment. Science, 284, 790 - 793.
Cloutier, P.A., Law, C.C., Crider, D.H., et. al. (1999). Venus-like interaction of the solar wind with Mars. Geophys. Res. Lett., 26, No. 17, 2685 - 2688.
Connerney, J.E.P., Açuna, M.H., Wasilewski, P., et. al. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794 - 798.
Dulk, G.A., Leblanc, Y., Sault, R.J., et. al. (1999). Jupiter's magnetic field as revealed by the synchrotron radiation belts. Comparison of a 3-D reconstruction with models of the field. Astron. and Astrophys., 347, 1029 -1038.
Satoh, T., & Connerney, J.E.P. (1999). Jupiter's H3+ emissions viewed in corrected Jovimagnetic coordinates. Icarus, 141, 236 - 252.
Satoh, T., & Connerney, J.E.P. (1999). Spatial and temporal variations of Jupiter's H3+ emissions deduced from image analysis. Geophys. Res. Lett., 26, 1789 - 1792.
Crider, D.H., Cloutier, P.A., Law, C.C., et. al. (2000). Evidence for electron impact ionization in the magnetic pileup boundary of Mars". Geophys. Res. Lett., 27, 45 - 48.
Connerney, J.E.P., Açuna, M.H., Wasilewski, P., Ness, N.F., Reme, H., Mazelle, C., Vignes, D., Lin, R.P., Mitchell, D., & Cloutier, P. (2000). Reply to: Questions about Magnetic lineations in the ancient crust of Mars, by C.G.A. Harrison; Science, 287,(5453) 547.
Connerney, J.E.P., & Satoh, T. (2000). The H3+ ion: A remote diagnostic of the Jovian magnetosphere. Phil. Trans. R. Soc. Lond. A, 358, 2471 - 2483.
Mitchell, D., Lin, R.P., Reme, H., Crider, D.H., Cloutier, P.A., Connerney, J.E.P., Açuna, M.H., & Ness, N.F. (2000). Oxygen Auger electrons observed in Mars's ionosphere. Geophys. Res. Lett., 27, (13), 1871-1874.
Ness, N.F., Açuna, M.H., Connerney, J.E.P., et. al. (2000). Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from the radio occultation experiments. J. Geophys. Res., 105, (A7), 15991-16004.
Vignes, D., Mazelle, C., Reme, H., Açuna, M.H., Connerney, J.E.P., Lin, R.P., Mitchell, D., Cloutier, P.A., Crider, D.H., & Ness, N.F. (2000). The solar wind interaction with Mars: Locations and shapes of the bow shock and magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor. Geophys. Res. Lett., 27, 49 - 52.
Waite, J.H., Jr., Grodent, D., Mauk, B.M., et. al. (2000). Multispectral observations of Jupiter's aurora. Adv. Space Res., 26, no. 10, 1453 - 1475.
Açuna, M.H., Connerney, J.E.P., Wasilewski, P., et. al. (2001). The magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. J. Geophys. Res., 106, (E10), 23403 – 23417.
Chassefiere, E, et al. (68 others), (2001). Scientific objectives of the DYNAMO mission. Adv. Space Res., 27.
Connerney, J.E.P., Açuna, M.H., Wasilewski, P.et. al. (2001). The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett., 28, 4015 - 4018.
Crider, D, Açuna, M.H., Connerney, J.E.P., et. al. (2001). Magnetic field draping around Mars: Mars global surveyor results. Adv. Space Res., 27.
Mitchell, D.L., Lin, R.P., Mazelle, C., et. al. (2001). Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res., 106, (E10), 23418 – 23427.
Brain, D.A., Bagenal, F., Açuna, M.H., Connerney, J.E.P., et. al. (2002). Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res., 107, (A6), doi:10.1029/2000JA000416.
Clarke, J.T., Ajello, J., Ballester, G.E., et. al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter. Nature, 415, 997 - 1000.
Crider, D.H., Açuna, M.H., Connerney, J.E.P., Vignes, D., Ness, N. F., Krymskii, A. M., Breus, T. K., Rème, H., Mazelle, C., Mitchell, D.L., Lin, R.P., Cloutier, P.A., & Winterhalter, D. (2002). Observations of the latitude dependence of the location of the martian magnetic pileup boundary. Geophys. Res. Lett., 29, 8, 10.1029/2001GL013860.
Krymskii, A.M., Breus, T.K., Ness, N.F., et. al. (2002). Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars. J. Geophys. Res., 107, (A9), 1245, doi:10.1029/2001JA000239.
Vignes, D., Açuna, M.H., Connerney, J.E.P., Crider, D.H., Reme, H., Mazelle, C. (2002). Factors controlling the location of the Bow Shock at Mars. Geophys. Res. Lett., 29.
Bertucci, C., Mazelle, C., Crider, D.H., et. al. (2003). Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations. Geophys. Res. Lett., 30, 2, 1099, doi:10.1029/2002GL015713.
Brain, D.A., Bagenal, F., Açuna, M.H., & Connerney, J.E.P. (2003). Martian magnetic morphology: Contributions from the solar wind and crust. J. Geophys. Res., 108, (A12), Art. No. 1424.
Burlaga, L.F., Ness, N.F., Stone, E.C., et. al. (2003). Search for the heliosheath with Voyager 1 magnetic field measurements. Geophys. Res. Lett., 30 (20): Art. No. 2072.
Connerney, J.E.P., Açuna, M.H., Ness, N.F., Spohn, T., & Schubert, G. (2004). Mars crustal magnetism. In D. Winterhalter. M.H. Açuna, et el., (Eds.). The solar wind interaction with Mars, Kluwer Academic Publishers.
Connerney, J.E.P., Açuna, M.H., Ness, N.F., Spohn, T., & Schubert, G. (2004). Mars crustal magnetism. Space Science Revs., 111(1-2), 1-32.
Kletetschka, G., Açuna, M.H., Kohout, T., Wasilewski, P.J., & Connerney, J.E.P. (2004). An empirical scaling law for acquisition of thermoremanent magnetization. Phys. Earth and Planet. Sci. Lett., 226 (3-4): 521-528.
Kletetschka, G., Connerney, J.E.P., Ness, N.F., & Açuna, M.H. (2004). Pressure effects on martian crustal magnetization near large impact basins. Meteoritics and Plan. Sci. 39 (11): 1839-1848.
Breus, T.K., Ness, N.F., Kryrnskii, A.M., et. al. (2005). The effects of crustal magnetic fields and the pressure balance in the high latitude ionosphere/atmosphere at Mars. Planetary Atmospheres, Ionospheres, and magnetospheres. Adv. in Space Res. 36(11)2043-2048, Sp. Issue.
Burlaga, L.F., Ness, N.F., Açuna, M.H., Lepping, R.P., Connerney, J.E.P., Stone, E.C., & McDonald, F.B. (2005). Crossing the termination shock into the heliosheath: magnetic fields. Science, 309, 2027-2029.
Clarke, J.T., Gerard, J.-C., Grodent, D., Wannawichian, S., Gustin, J., Connerney, J.E.P., Crary, F., Dougherty, M., Kurth, W., Cowley, S.W.H., Bunce, E.J., Hill, T., & Kim, J. (2005). Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter", Nature, 433, 717 - 719.
Clarke, J.T., Grodent, D., Cowley, S., et. al. (2005). Jupiter’s aurorae. In F. Bagenal, T.E. Dowling, and W.B. McKinnon (Eds.), Jupiter: The planet, satellites, and magnetosphere, Cambridge University Press, Cambridge, UK.
Connerney, J.E.P., Açuna, M.H., Ness, N.F., Kletetschka, G., Mitchell, D., Lin, R.P., & Reme, H. (2005). Tectonic implications of Mars crustal magnetism. Proc. Nat. Acad. Sci., Vol. 102, (42), 14970-14975, doi: 10.1073/pnas.0507469102.
Crider, D.H., Espley, J., Brain, D.A., Mitchell, D.L., Connerney, J.E.P., & Açuna, M.H. (2005). Mars Global Surveyor observations of the Halloween 2003 solar superstorm's encounter with Mars. J. Geophys. Res., 110, A09S21, doi:10.1029/2004JA010881.
Kaiser, M.L., Desch, M.D., Açuna, M.H., Ness, N.F., & Connerney, J.E.P. (2005). Comment on Rotation rate of Saturn's interior from magnetic field observations. G. Giampieri and M.K. Dougherty Geophys. Res. Lett., 32 (2): Art. No. L02201, doi:10.1029/2004GL021398.
Kletetschka, G., Connerney, J.E.P., Açuna, M.H., Wasilewski, P.J., & Ness, N.F. (2005). Reply to the comment on the paper: Grain size dependent potential for self generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite by Jafar Arkani-Hamed. Phys. Earth and Plan. Int., 153 (4): 238-239.
Kletetschka, G., Ness, N.F., Connerney, J.E.P., Açuna, M.H., & Wasilewski, P.J. (2005). Grain size dependent potential for self generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite. Phys. Earth and Plan. Int., 148 (2-4): 149-156.
Saur, J., Neubauer, F.M., Connerney, J.E.P., Zarka, P., & Kivelson, M. (2005). Plasma interactions of Io with its plasma torus. In F. Bagenal, T. E. Dowling, and W. B. McKinnon, (Eds.), Jupiter: The planet, satellites, and magnetosphere, Cambridge University Press, Cambridge, UK.
Grodent, D., Gerard, J.C., Gustin, J., Mauk, B.H., Connerney, J.E.P., & Clark, J.T. (2006). Europa’s FUV auroral tail on Jupiter. Geophys. Res. Lett., 33 (6):Art. No. L06201.
Prange, R., Fouchet, T., Courtin, R., Connerney, J.E.P., & McConnell, J.C. (2006). Latitudinal variation of Saturn photochemistry deduced from spatially resolved ultraviolet spectra. Icarus Icarus Icarus, 180 (2): 379-392.
Connerney, J.E.P. (2007). Planetary Magnetism. In G. Schubert and T. Spohn, (Eds.). Volume 10: Planets and Satellites, Treatise in Geophysics, Elsevier, Oxford, UK.
Mitchell, D.L., Lillis, R.J., Lin, R.P., Connerney, J.E.P., & Açuna, M.H. (2007). Global map of Mars’ crustal magnetic field based on electron reflectometry. J. Geophys. Res.-Planets 112 (E1): Art. No. E01002.
Açuna, M.H., Kletetschka, G., & Connerney, J.E.P. (2008). Mars’ crustal magnetization: A window into the past. In J.F. Bell III, (Ed.) The Martian Surface: Composition, Mineralogy, and Physical Properties, Cambridge Univ. Press.
Burlaga, L.F., Ness, N.F., Açuna, M.H., et. al. (2008). Magnetic fields at the solar wind termination shock. Nature, Vol 454/3, doi:10.1038/nature07029.
Grodent, D., Bonfond, B., Gérard, J., et. al. (2008). Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere. J. Geophys. Res., 113, A09201, doi:10.1029/2008JA013185.
Dohm, J.M., Anderson, R.C., Williams, J.-P., et. al. (2009). Claritas rise, Mars: Pre-tharsis magmatism?. J. of Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2009.03.012.
Langlais, B., Lesur, V., Purucker, M.E., et. al. (2010). Crustal magnetic fields of terrestrial planets. Space Sci. Rev., 152 (1-4): 223-249.
Connerney, J.E.P. (2013). Saturn’s ring rain, Nature, 496, 178 - 179.
Kletzing, C.A., et. al. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179: 127-181. doi: 10.1007/s11214-013-9993-6.
Pappalardo, R.T., Vance, S., Bagenal, F., et. al. (2013). Science potential from a Europa lander. Astrobiology 13, No. 8, 740 - 773.
Bougher, S., Jakosky, B.M., Halekas, J., et al. (2015). Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 350, no. 6261, doi:10.1126/Science.aad0459.
Brain, D. A., McFadden, J.P., Halekas, J.S., et al. (2015). The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophys. Res. Lett., 42, 9142–9148, doi:10.1002/2015GL065293.
Collinson, G., Halekas, J.S., Grebowsky, J. et. al. (2015). A hot flow anomaly at Mars. Geophys. Res. Lett., 42, 9121–9127, doi:10.1002/2015GL065079.
Collinson, G., Mitchell, D.L., Glocer, A., et. al. (2015). Electric Mars: The first direct measurement of an upper limit for the Martian “polar wind” electric potential. Geophys. Res. Lett., 42, 9128–9134, doi:10.1002/2015GL065084.
Connerney, J.E.P. (2015). Planetary magnetism. Volume 10: Planets and Satellites. In G. Schubert and T. Spohn, (Eds.) Treatise in Geophysics, Elsevier, Oxford, UK, vol. 10.06, 195-237. ISBN: 978-0-444-63803-1.
Connerney, J.E.P., Espley, J.R., DiBraccio, G.A., et. al. (2015). First results of the MAVEN magnetic field investigation. Geophys. Res. Lett., 42, 8819–8827, doi:10.1002/2015GL065366.
Connerney, J.E.P., Espley, J.R., Lawton, P., et. al. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195, 257-291, doi:10.1007/s11214-015-0169-4.
Curry, S.M., Luhmann, J.G., Ma, Y.J., et al. (2015). Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data-based models. Geophys. Res. Lett., 42, 9095–9102, doi:10.1002/2015GL065304.
DiBraccio, G.A., Livi, R., Collinson, G., et. al. (2015). Magnetotail dynamics at Mars: Initial MAVEN observations, Geophys. Res. Lett., 42, 8828–8837, doi:10.1002/2015GL065248.
Dong, Y., Fang, X., Brain, D.A., et. al. (2015). Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophys. Res. Lett., 42, 8942–8950, doi:10.1002/2015GL065346.
Dong, C., Ma, Y.J., Bougher, S.W., et al. (2015). Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophys. Res. Lett., 42, 9103–9112, doi:10.1002/2015GL065944.
Espley, J.R., DiBraccio, G.A., Connerney, J.E.P., et. al. (2015). A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere, Geophys. Res. Lett., 42, 8810–8818, doi:10.1002/2015GL066300.
Halekas, J.S., Jakosky, B.M, Luhmann, J.G., et. al. (2015). MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophys. Res. Lett., 42, 8901–8909, doi:10.1002/2015GL064693.
Halekas, J. S., McFadden, J.P., Connerney, J.E.P., et al. (2015). Time-dispersed ion signatures observed in the Martian magnetosphere by MAVEN. Geophys. Res. Lett., 42, 8910–8916, doi:10.1002/2015GL064781.
Hara, T., Mitchell, D.L., McFadden, J.P., et al. (2015). Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophys. Res. Lett., 42, 8933–8941, doi:10.1002/2015GL065720.
Harada, Y., Andersson, L., DiBraccio, G.A., et. al. (2015). Magnetic reconnection in the near-Mars magnetotail: MAVEN observations. Geophys. Res. Lett., 42, 8838–8845, doi:10.1002/2015GL065004.
Harada, Y., Halekas, J.S., McFadden, J.P., et al. (2015). Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, 8925–8932, doi:10.1002/2015GL065005.
Jakosky, B., Grebowsky, J., Luhmann, J., et. al. (2015). MAVEN observations of the response of Mars to an interplanetary Coronal Mass Ejection. Science, 350, 6261, doi: 10.1126/science.aad0210.
Jakosky, B.M., Lin, R.P., Grebowsky, J., et. al. (2015). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev., 195, 3-48, doi:10.1007/s11214-015-0139-x.
Leblanc, F., Modolo, R., Curry, S., et al. (2015). Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN. Geophys. Res. Lett., 42, 9135–9141, doi:10.1002/2015GL066170.
Luhmann, J.G., Dong, C.F., Ma, Y.J., et al. (2015). Implications of MAVEN Mars near-wake measurements and models. Geophys. Res. Lett., 42, 9087–9094, doi:10.1002/2015GL066122.
Ma, Y.J., Russell, C.T., Fang, X., et al. (2015). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophys. Res. Lett., 42, 9113–9120, doi:10.1002/2015GL065218.
Rahmati, A., Larson, D.E., Cravens, T.E., et. al. (2015). MAVEN insights into oxygen pickup ions at Mars. Geophys. Res. Lett., 42, 8870–8876, doi:10.1002/2015GL065262.
Ruhunusiri, S., Halekas, J.S., Connerney, J.E.P., et. al. (2015). Low-frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions. Geophys. Res. Lett., 42, 8917–8924, doi:10.1002/2015GL064968.
Steckiewicz, M., McFadden, J.P., Luhmann, J.G., et. al. (2015). Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophys. Res. Lett., 42, 8877–8884, doi:10.1002/2015GL065257.
Vogt, M.F., Mazelle, C., Jakosky, B.M., et. al. (2015). Ionopause-like density gradients in the Martian ionosphere: A first look with MAVEN. Geophys. Res. Lett., 42, 8885–8893, doi:10.1002/2015GL065269.
Bale, S.D., Goetz, K., Harvey, P.R., Turin, P., Bonnell, J.W., Dudok de Wit, T., et al. (2016). The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients. Space Sci. Rev., 204, 49, doi:10.1007/s11214-016-0244-5.
Dewey, R.M., Baker, D.N., Mays, M.L., Brain, D.A., Jakosky, B.M., Halekas, J.S., et. al., (2016). Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSA-ENLIL + Cone model: Continuous Solar Wind Modeling at Mars, J. Geophy. Res. Space Physics, 121, 6207-6222, doi: 10.1002/2015JA021941.
Halekas, J.S., Brain, D.A., Ruhunusiri, S., McFadden, J.P., Mitchell, D.L., Mazelle, C., et. al. (2016). Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN: Plasma Clouds at Mars, Geophys. Res. Lett., 43, 1426-1434, doi:10.1002/2016GL067752.
Hara, T., Luhmann, J.G., Halekas, J.S., Espley, J.R., Seki, K., Brain, D.A., et. al. (2016). MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015, Geophys. Res. Lett., 43, 10, 4816-4824, doi:10.1002/2016GL068960.
Harada, Y., Mitchell, D.L., Halekas, J.S., McFadden, J.P., Mazelle, C., Connerney, J.E.P., et. al. (2016). MAVEN observations of energy-time dispersed electron signatures in Martian crustal magnetic fields: Dispersed electrons at Mars, Geophys. Res. Lett., 43, 939-944, doi:10.1002/2015GL067040.
Lillis, R.J., Lee, C.O., Larson, D., Luhmann, J.G., Halekas, J.S., Connerney, J.E.P., et. al. (2016). Shadowing and anisotropy of solar energetic ions at Mars measured by MAVEN during the March 2015 solar storm, J. Geophy. Res. Space Physics, 121, 2818-2829, doi:10.1002/2015JA022327.
Masunaga, K., Seki, K., Brain, D., Fang, X., Dong, Y., Jakosky, B.M., et. al. (2016). O super(+) ion beams reflected below the Martian bow shock: MAVEN observations, J. Geophy. Res. Space Physics, 121, 3093-3107, doi:10.1002/2016JA022465.
Romanelli, N., Mazelle, C., Chaufray, J.Y., Meziane, K., Shan, L., Ruhunusiri, S., et. al. (2016). Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere, J. Geophy. Res. Space Physics, vol. 121, 11,113-11,128, doi:10.1002/2016JA023270.
Ruhunusiri, S., Halekas, J.S., Connerney, J.E.P., Espley, J.R., McFadden, J.P., Mazelle, C., et. al. (2016). MAVEN observation of an obliquely propagating low‐frequency wave upstream of Mars, J. Geophys. Res.: Space Physics, 121, 2374-2389, doi:10.1002/2015JA022306.
Ruhunusiri, S., Halekas, J.S., McFadden, J.P., Connerney, J.E.P., Espley, J.R., Harada, Y., et. al. (2016). MAVEN observations of partially developed Kelvin-Helmholtz vortices at Mars, Geophys. Res. Lett., vol. 43, no. 10, pp. 4763-4773, doi:10.1002/2016GL068926.
Sakai, S., Andersson, L., Cravens, T.E., Mitchell, D.L., Mazelle, C., Rahmati, A., et. al. (2016). Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data, J. Geophy. Res. Space Physics, 121, 7049-7066, doi:10.1002/2016JA022782.
Stallard, T.S., Clarke, J.T., Melin, H., Miller, S., Nichols, J.D., O’Donoghue, J., et. al. (2016). Stability within Jupiter's polar auroral 'Swirl region' over moderate timescales, Icarus, 268, 145-155, doi:10.1016/j.icarus.2015.12.044.
Xu, S., Mitchell, D., Liemohn, M., Dong, C., Bougheer, S., Fillingim, M., et. al. (2016). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source: Mars nightside photoelectron, Geophys. Res. Lett., 43, 8876-8884, doi:10.1002/2016GL070527.
Adriani, A., Mura, A., Moriconi, M., Dinelli, B.M., Fabiano, F., Altieri, F., et. al., (2017). Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora, Geophys. Res. Lett., 44, doi:10.1002/2017GL072905.
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J.E.P., Clark, G., Ebert, R.W., et al. (2017). Electron beams and loss cones in the auroral regions of Jupiter, Geophys. Res. Lett., 44, doi:10.1002/2017GL073180.
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S.J., Bonfond, B., Bunce, E.J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews. doi:10.1007/s11214-014-0036-8.
Becker, H.N., Alexander, J.W., Adriani, A., Mura, A., Cicchetti, A., Noschese, R., et al. (2017). The Juno Radiation Monitoring (RM) Investigation. Space Science Reviews. doi:10.1007/s11214-017-0345-9.
Becker, H.N., Santos-Costa, D. Jorgensen, J., Denver, T., Adriani, A.Mura, A., et. al. (2017). Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3, Geophys. Res. Lett., 44, doi:10.1002/2017GL073091.
Benn, M., Jorgensen, J.L., Denver, T., Brauer, P., Jorgensen, P.S., Andersen, A.C., et al. (2017), Observations of interplanetary dust by the Juno magnetometer investigation, Geophys. Res. Lett., 44, doi:10.1002/2017GL073186.
Bolton, S.J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. (2017). Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 356(6340), 821-825, doi:10.1126/science.aal2108.
Bolton, S.J., & Connerney, J.E.P. (2017). Editorial: Topical collection of the Juno mission science objectives, Instruments, and implementation. Space Science Reviews, 213(1–4), 1–3. doi:10.1007/s11214-017-0430-0.
Bolton, S.J., Lunine, J., Stevenson, D., Connerney, J.E.P., Levin, S., Owen, T.C., et. al., (2017). The Juno Mission. Space Science Reviews. doi:10.1007/s11214-017-0429-6.
Bonfond, B., Gladstone, G.R., Grodent, D., Greathouse, T.K., Versteeg, M.H., Hue, V., et. al. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations, Geophys. Res. Lett., 44, doi :10.1002/2017GL073114.
Clark, G., Mauk, B.H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., et al. (2017). Energetic particle signatures of magnetic field-aligned potentials over Jupiter’s polar regions. Geophysical Research Letters, 44(17), 8703–8711. doi:10.1002/2017GL074366.
Clark, G., Mauk, B.H., Paranicas, C., Haggerty, D., Kollmann, P., Rymer, A., et al. (2017). Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere, Geophys. Res. Lett., 44, doi: 10.1002/2016GL072325.
Connerney, J.E.P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S.J., Bonfond, B., et al. (2017). Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, doi:10.1126/science.aam5928.
Connerney, J.E.P., Benn, M., Bjarno, J.B., Denver, T., Espley, J., Jorgensen, J.L., et al. (2017). The Juno magnetic field investigation, Space Sci. Rev., 213(1-4), 39-138, doi: 10.1007/s11214-017-0334-z.
DiBraccio, G.A., Dann, J., Espley, J.R., Gruesbeck, J.R., Soobiah, Y., Connerney, J.E.P., et. al., (2017). MAVEN observations of tail current sheet flapping at Mars. J. Geophys. Res.: Space Physics, 122(4), 4308–4324. doi:10.1002/2016JA023488.
Dinelli, B.M., Fabiano, F., Adriani, A., Altieri, R., Moriconi, M.L., Mura, A., et. al., (2017). Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region, Geophys. Res. Lett., 44, doi:10.1002/2017GL072929.
Dong, Y., Fang, X., Brain, D.A., McFadden, J.P., Halekas, J.S., Connerney, J.E.P.,et. al., (2017). Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. J. Geophys. Res.: Space Physics, 122(4). doi:10.1002/2016JA023517.
Dubinin, E., Fraenz, M., Paetzold, M., McFadden, J., Halekas, J.S., DiBraccio, G.A., et al. (2017). The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. J. Geophys. Res.: Space Physics, 122 (11):11285-11301. Doi:10.1002/2017JA024741.
Dubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Mahaffy, P.R., Eparvier, F., et. al., (2017). Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. J. Geophys. Res: Space Physics, 122(7), 7142–7152. doi:10.1002/2017JA024126.
Duru, F., Gurnett, D.A., Morgan, D.D., Halekas, J., Frahm, R.A., Lundin, R., et. al. (2017). Response of the Martian ionosphere to solar activity including SEPs and ICMEs in a two-week period starting on 25 February 2015. Planetary and Space Science, 145, 28–37. doi:10.1016/j.pss.2017.07.010.
Ebert, R.W., Allegrini, F., Bagenal, F., Bolton, S.J., Connerney, J.E.P., Clark, G., et al. (2017). Accelerated flows at Jupiter's magnetopause: Evidence for magnetic reconnection along the dawn flank: Reconnection at Jupiter's magnetopause, Geophys. Res. Lett., 44, doi: 10.1002/2016GL072187.
Ebert, R.W., Allegrini, F., Bagenal, F., Bolton, S.J., Connerney, J.E.P., Clark, G., et al. (2017). Spatial Distribution and Properties of 0.1–100 keV Electrons in Jupiter’s Polar Auroral Region. Geophys. Res. Lett., 44(18), 9199–9207. doi:10.1002/2017GL075106.
Ermakov, V.N., Zelenyi, L.M., Vaisberg, O.L., Sementsov, E.A., Dubinin, E.M., Connerney, J.E.P., et.al. (2017). Initial analysis of ion fluxes in the magnetotail of Mars based on simultaneous measurements on Mars Express and Maven. Solar System Research, 51(5), 335–346. doi: 10.1134/S0038094617050021.
Fang, X., Ma, Y., Masunaga, K., Dong, Y., Brain, D., Halekas, J., et. al., (2017). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. J. Geophys. Res.: Space Physics, 122(4), 4117–4137. doi:10.1002/2016JA023509.
Folkner, W.M., Iess, L., Anderson, J., Asmar, S.W., Buccino, D.R., Durante, D., et al. (2017), Jupiter gravity field estimated from the first two Juno orbits, Geophys. Res. Lett., 44, doi:10.1002/2017GL073140.
Fowler, C.M., Andersson, L., Halekas, J., Espley, J.R., Mazelle, C., Coughlin, E.R., et. al. (2017). Electric and magnetic variations in the near-Mars environment. J. Geophys. Res.: Space Physics, 122(8), 8536–8559. doi:10.1002/2016JA023411.
Fowler, C., Andersson, L., Shaver, S., Thayer, J.P., Huba, J.D., Lillis, R., et al. (2017). MAVEN observations of ionospheric irregularities at Mars. Geophys. Res. Lett., 44, 10845-10854, doi: 10.1002/2017GL075189.
Garnier, P., Steckiewicz, M., Mazelle, C., Xu, S., Mitchell, D., Holmberg, M.K.G., et. al., (2017). The Martian photoelectron boundary as seen by MAVEN. J. Geophys. Res.: Space Physics, 122(10), 10,472-10,485. doi:10.1002/2017JA024497.
Gershman, D., DiBraccio, G., Connerney, J.E.P., Hospodarsky, G., Kurth, W.S., Ebert, R.W., et. al. (2017). Juno observations of large-scale compressions of Jupiter’s dawnside magnetopause. Geophys. Res. Lett., 44(15), 7559–7568. doi:10.1002/2017GL073132.
Gladstone, G.R., Versteeg, M.H., Greathouse, T.K., Hue, V., Davis, M.W., Gérard, D.C., et al. (2017). Juno-UVS approach observations of Jupiter's auroras, Geophys. Res. Lett., 44, doi:10.1002/2017GL073377.
Grassi, D., Adriani, A., Mura, A., Dinelli, B.M., Sindoni, G., Turrini, D., et. al., (2017). Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument, Geophys. Res. Lett., 44, doi:10.1002/2017GL072841.
Gruesbeck, J.R., Gershman, D.J., Espley, J.R., & Connerney, J.E.P. (2017). The interplanetary magnetic field observed by Juno enroute to Jupiter. Geophys. Res. Lett., 44(12), 5936–5942. doi:10.1002/2017GL073137.
Haggerty, D.K., Mauk, B.H., Paranicas, C.P., Clark, G., Kollmann, P., Rymer, A.M., et. al. (2017). Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission. Geophys. Res. Lett., 44(13), 6476–6482. doi:10.1002/2017GL072866.
Halekas, J.S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D.L., Mazelle, C., et. al., (2017). Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results, Geophys. Res. Lett., 122, 547-578, doi:10.1002/2016JA023167.
Halekas, J., Brain, D., Luhmann, J., DiBraccio, G.A., Ruhunusiri, S., Harada, T., et al. (2017). Flows, fields, and forces in the Mars-solar wind interaction. Geophys. Res. Lett., 122, 11320-11341, doi:10.1002/2017JA024772.
Hara, T., Brain, D.A., Mitchell, D.L., Luhmann, J.G., Seki, K., Hasegawa, H., et. al. (2017). MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields: giant ionospheric flux rope near Mars, J. Geophy. Res. Space Physics, 122, 828-842, doi: 10.1002/2016JA023347.
Hara, T., Luhmann, J.G., Leblanc, F., Curry, S.M., Seki, K., Brain, D.A., et. al., (2017). MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field, J. Geophy. Res. Space Physics, 122, 1083-1101, doi:10.1002/2016JA023348.
Hospodarsky, G.B., Kurth, W.S., Bolton, S.J., Allegrini, F., Clark, G.B., Connerney, J.E.P., et al. (2017), Jovian bow shock and magnetopause encounters by the Juno spacecraft, Geophys. Res. Lett., 44, doi:10.1002/2017GL073177.
Imai, M., Kurth, W.S., Hospodarsky, G.B., Bolton, S.J., Connerney, J.E.P. & Levin, S.M., (2017). Direction-finding measurements of Jovian low-frequency radio components by Juno near Perijove 1. Geophys. Res. Lett., 44(13), 6508–6516. doi:10.1002/2017GL072850.
Imai, M., Kurth, W.S., Hospodarsky, G.B., Bolton, S.J., Connerney, J.E.P., Levin, S.M., et. al., (2017). Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array, Geophys. Res. Lett., 44, doi:10.1002/2016GL072454.
Imai, M., Kurth, W.S., Hospodarsky, G.B., Bolton, S.J., Connerney, J.E.P., & Levin, S.M., (2017), Statistical study of latitudinal beaming of Jupiter's decametric radio emissions using Juno, Geophys. Res. Lett., 44, doi:10.1002/2017GL073148.
Kaspi Y., Guillot, T., Galanti, E., Miguel, Y., Helled, R., Hubbard, W.B., et. al., (2017), The effect of differential rotation on Jupiter's low-degree even gravity moments, Geophys. Res. Lett. 44, doi:10.1002/2017GL073629.
Kollmann P., Paranicas, C., Clark, G., Mauk, B.H., Haggerty, D.K., Rymer, A.M., et al., (2017), A heavy ion and proton radiation belt inside of Jupiter's rings, Geophys. Res. Lett., 44, doi:10.1002/2017GL073730.
Kurth, W.S., Imai, M., Hospodarsky, G.B., Gurnett, D.A., Louarn, P., Valek, P., et al. (2017). A new view of Jupiter's auroral radio spectrum, Geophys. Res. Lett., 44, doi:10.1002/2017GL072889.
Li, W., Thorne, R.M., Ma, Q., Zhang, X.-J., Gladstone, G.R., Hue, V., et. al., (2017). Understanding the origin of Jupiter’s diffuse aurora using Juno’s first perijove observations. Geophys. Res. Lett., 44(20), 10,162-10,170, doi:10.1002/2017GL075545.
Louarn, P., Allegrini, F., McComas, D.J., Valek, P.W., Kurth, W.S., André, N., et al. (2017). Generation of the Jovian hectometric radiation: First lessons from Juno, Geophys. Res. Lett., 44, doi:10.1002/2017GL072923.
Louis, C.K., Lamy, L., Zarka, P., Cecconi, B., Imai, M., Kurth, W.S., et.al., (2017). Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations, Geophys. Res. Lett., 44, doi:10.1002/2017GL073036.
Ma, Y.J., Russell, C.T., Fang, X., Dong, C.F., Nagy, A.F., Toth, G., et. al., (2017). Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time‐dependent MHD study, J. Geophy. Res. Space Physics, 122, 1714-1730, doi: 10.1002/2016JA023402.
Ma, Q., Thorne, R.M., Li, W., Zhang, W.-J., Mauk, B.H., Paranicas, C., et al. (2017). Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass, Geophys. Res. Lett., 44, doi:10.1002/2017GL072983.
Masunaga, K., Seki, K., Brain, D.A., Fang, X., Dong, Y., Jakosky, B.M., et. al., (2017). Statistical analysis of the reflection of incident O+pickup ions at Mars: MAVEN observations. J. Geophys. Res.: Space Physics, 122(4), 4089–4101, doi:10.1002/2016JA023516.
Mauk, B.H., Haggerty, D.K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A.M., et al., (2017). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams, Geophys. Res. Lett., 44, doi: 10.1002/2016GL072286.
Mauk, B.H., Haggerty, D.K., Aranicas, C.P., Clark, G., Kollmann, P., Rymer, A.M., et al. (2017). Discrete and broadband electron acceleration in Jupiter’s powerful aurora. Nature, 549(7670), 66–69, doi:10.1038/nature23648.
McComas, D.J., Szalay, J., Allegrini, F., Bagenal, F., Connerney, J.E.P., Ebert, R.W., et. al., (2017), Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter, Geophys. Res. Lett., 44, doi:10.1002/2017GL072831.
Meziane, K., Mazelle, C.X., Romanelli, N., Mitchell, E.L., Espley, J.R., Connerney, J.E.P., et. al., (2017). Martian electron foreshock from MAVEN observations, J. Geophy. Res. Space Physics, 122, 1531-1541, doi: 10.1002/2016JA023282.
Moore, K.M., Bloxham, J., Connerney, J.E.P., Jorgensen, J.L., & Merayo, J.M.G., (2017), The analysis of initial Juno magnetometer data using a sparse magnetic field representation, Geophys. Res. Lett., 44, doi:10.1002/2017GL073133.
Moore, L., O’Donoghue, J., Melin, H., Stallard, T., Tao, C.,Zieger, B., et al., (2017), Variability of Jupiter's IR H3+ aurorae during Juno approach, Geophys. Res. Lett., 44, doi:10.1002/2017GL073156.
Moriconi, M.L., Adriani, A., Dinelli, B., Fabiano, F., Altieri, F., Tosi, F., et. al., (2017). Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions, Geophys. Res. Lett., 44, doi:10.1002/2017GL073592.
Mura, A., Adriani, A., Altieri, F., Connerney, J.E.P., Bolton, S.J., Moriconi, M.L., et. al. (2017). Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints. Geophys. Res. Lett., 44(11), 5308–5316, doi: 10.1002/2017GL072954.
Nichols, J.D., Badman, S., Bagenal, F., Bolton, S.J., Bonfond, B., Bunce, E.J., et. al., (2017), Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophys. Res. Lett., 44, 7643–7652, doi:10.1002/2017GL073029.
O'Donoghue, J., Moore, L., Connerney, J.E.P., Melin, H., Stallard, T.S., Miller, S., et. al., (2017). Redetection of the ionospheric H-3(+) signature of Saturn's "ring rain". Geophys. Res. Lett., 44, 11769, doi:10.1002/2017GL075932
Paranicas, C., Mauk, B., Haggerty, D., Clark, G., Kollmann, P., Rymer, A.M., et. al., (2017). Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3, Geophys. Res. Lett., 44, doi:10.1002/2017GL072600.
Santos-Costa, D., Adumitroaie, V., Ingersoll, A., Gulkis, S., Janssen, M.A., Levin, S.M., et. al. (2017). Fi
rst look at Jupiter’s synchrotron emission from Juno’s perspective. Geophys. Res. Lett., 44(17), 8676–8684, doi:10.1002/2017GL072836
Sindoni, G., Grassi, D., Adriani, A., Mura, A., Moriconi, M.L., Dinelli, B.M., et al. (2017). Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument, Geophys. Res. Lett., 44, doi:10.1002/2017GL072940.
Stallard, T.S., Melin, H., Miller, S., Moore, L., O’Donoghue, J., Connerney, J.E.P., et. al., (2017). The great cold spot in Jupiter's upper atmosphere, Geophys. Res. Lett., 44, pp. 3000-3008, doi:10.1002/2016GL071956.
Szalay, J.R., Allegrini, F., Bagenal, F., Bolton, S.J., Clark, G., Connerney, J.E.P., et al. (2017). Plasma measurements in the Jovian polar region with Juno/JADE, Geophys. Res. Lett., 44, doi:10.1002/2017GL072837.
Tetrick, S.S., Gurnett, D.A., Kurth, W.S., Imai, M., Hospodarsky, G.B., Bolton, S.J., et al. (2017). Plasma waves in Jupiter's high-latitude regions: Observations from the Juno spacecraft, Geophys. Res. Lett., 44, doi:10.1002/2017GL073073.
Valek, P.W., Thomsen, M.F., Allegrini, F., Bagenal, F., Bolton, S.J., Connerney, J.E.P., et.al. (2017). Hot flow anomaly observed at Jupiter’s bow shock. Geophysical Research Letters, 44(16), 8107–8112. doi:10.1002/2017GL073175.
Vogt, M.F., Withers, P., Fallows, K., Andersson, L., Girazian, Z., Mahaffy, P.R., et. al., (2017). MAVEN observations of dayside peak electron densities in the ionosphere of Mars, J. Geophy. Res. Space Physics, 122, 891-906, doi:10.1002/2016JA023473.
Wahl, S.M., Hubbard, W.B., Militzer, B., Guillot, T., Miguel, Y., Movshovitz, N., et al. (2017). Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core, Geophys. Res. Lett., 44, doi:10.1002/2017GL073160.
Weber. T., Brain, D., Mitchell, D., Xu, S., Connerney, J.E.P., & Halekas, J., (2017). Characterization of low-altitude nightside Martian magnetic topology using electron pitch angle distributions. J. Geophy. Res. Space Physics, 122, 9777–9789, doi:10.1002/2017JA024491.
Xu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J., et. al., (2017). Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations, J. Geophy. Res. Space Physics, 122, 1831-1852, doi: 10.1002/2016JA023467.
Zhang, X.-J., Thorne, R.M., Ma, Q., Li, W., Mauk, B.H., Paranicas, C., et. al., (2017). Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on Juno, Geophys. Res. Lett., 44, doi:10.1002/2017GL072902.
Adriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M. L., et al. (2018). Clusters of cyclones encircling Jupiter's poles. Nature, 555(7695), 216-219, doi: 10.1038/nature25491.
Bonfond, B., Gladstone, G.R., Grodent, D., Gerard, J.C., Greathouse, T.K., Hue, V., et al., (2018). Bar code events in the Juno-UVS data: Signature similar to 10MeV electron microbursts at Jupiter. Geophysical Research Letters, 45(22), 12108-12115, doi:10.1029/2018GL080490.
Brown, S., Janssen, M., Adumitroaie, V., Atreya, S., Bolton, S., Gulkis, S., et. al. (2018). Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature, 558(7708), 87–90. doi:10.1038/s41586-018-0156-5.
Connerney, J.E.P., Kotsiaros, S., Oliversen, R.J., Espley, J.R., Joergensen, J.L., Joergensen, P.S., et al. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophys Res. Lett., 45, doi:10.1002/2018GL077312.
DiBraccio, G.A., Luhmann, J.G., Curry, S.M., Espley, J.R., Xu, S., Mitchell, D.L., et al. (2018). The twisted configuration of the Martian magnetotail: MAVEN observations. Geophysical Research Letters, 45(10), 4559–4568, doi:10.1029/2018GL077251.
Dubinin, E., Fraenz, M., Pätzold, M., Halekas, J.S., Mcfadden, J., Connerney, J.E.P., et al. (2018). Solar wind deflection by mass loading in the Martian magnetosheath based on MAVEN observations. Geophys Res. Lett., 45, 2574-2579, doi:10.1002/2017GL076813.
Dubinin, E., Fraenz, M., Paetzold, M., McFadden, J., Haleekas, J.S., Connerney, J.E.P., et. al. (2018). Martian ionosphere observed by MAVEN. Influence of solar wind and IMF on upper ionosphere. Planetary and Space Science,doi:10.1016/j.pss.2018.03.016.
Egan, H., Ma, Y., Dong, C., Modolo, R., Jarvinen, R., Gougher, S., et al. (2018). Comparison of global Martian plasma models in the context of MAVEN observations. J. Geophys. Res.: Space Physics, 123, 3714–3726, doi:10.1029/2017JA025068.
Elliott, S.S., Gurnett, D.A., Kurth, W.S., Clark, G., Mauk, B.H., Bolton, S.J., et al. (2018). Pitch angle scattering of upgoing electron beams in Jupiter's polar regions by whistler mode waves. Geophys Res Lett. 45, 1246-1252. doi:10.1002/2017GL076878.
Fowler, C.M., Andersson, L., Peterson, W.K., Halekas, J., Nagy, A.F., Ergun, R.E., et al., (2018). Correlations between enhanced electron temperatures and electric field wave power in the Martian ionosphere. Geophys Res Lett. 45, 493-501, doi:10.1002/2017GL073387.
Gérard, J.-C., Mura, A., Bonfond, B., Gladstone, G.R., Adriani, A., Hue, V., et al. (2018). Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 312, 145-156, doi:10.1016/j.icarus.2018.04.020.
Grodent, D., Bonfond, B., Yao, Z., Gérard, J.-C., Radioti, A., Dumont, M., et. al. (2018). Jupiter’s aurora observed with HST during Juno orbits 3 to 7. J. Geophys. Res.: Space Physics, 123(5), 3299–3319, doi:10.1002/2017JA025046.
Gruesbeck, J.R., Espley, J.R., Connerney, J.E.P., DiBraccio, G.A., Soobiah, Y.I., Brain, D., et. al. (2018). The Three-Dimensional bow shock of Mars as observed by MAVEN. J. Geophys. Res.: Space Physics, 123(6), 4542–4555. doi:10.1029/2018JA025366.
Guillot, T., Miguel, Y., Militzer, B., Hubbard, W.B., Kaspi, Y., Galanti, E., et al., (2018). A suppression of differential rotation in Jupiter’s deep interior. Nature, 555, 227-230, doi: 10.1038/nature25775.
Jakosky, B., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., et al. (2018). Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, doi:10.1016/j.icarus.2018.05.030.
Kaspi, Y., Galanti, E., Hubbard, W.B., Stevenson, D.J., Bolton, S.J., Iess, L., et al. (2018). Jupiter's atmospheric jet-streams extend thousands of kilometers deep. Nature, 555, 223-226, doi:10.1038/nature25793.
Kolmašová, I., Imai, M., Santolík, O., Kurth, W.S., Hospodarsky, G.B., Gurnett, D.A., et. al. (2018). Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nature Astronomy, 2(7), 544–548, doi:10.1038/s41550-018-0442-z.
Kurth, W.S., Mauk, B.H., Elliott, S.S., Gurnett, D.A., Hospodarsky, G.B., Santolik, O., et al. (2018). Whistler mode waves associated with broadband auroral electron precipitation at Jupiter. Geophysical Research Letters, 45(18), 9372-9379, doi:10.1029/2018GL078566.
Less, L., Folkner, W.M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., et al. (2018). The measurement of Jupiter’s asymmetric gravity field, Nature, 555, 220-222, doi:10.1038/nature25776.
Lillis, R.J., Mitchell, D.L., Steckiewicz, M., Brain, D., Xu, S., Weber, T., et. al. (2018). Ionizing electrons on the Martian nightside: Structure and variability. J. Geophys. Res.: Space Physics, 123(5), 4349–4363, doi:10.1029/2017JA025151.
Ma, Y., Russell, C.T., Toth, G., Chen, Y., Nagy, A.F., Harada, Y., et. al. (2018). Reconnection in the Martian magnetotail: Hall-MHD with embedded particle-in-cell simulations. J. Geophys. Res.: Space Physics, 123(5), 3742–3763, doi:10.1029/2017JA024729.
Mauk, B.H., Haggerty, D.K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A.M., et. al. (2018). Diverse electron and ion acceleration characteristics observed over Jupiter’s main aurora. Geophysical Research Letters, 45, 1277–1285, doi:10.1002/2017GL07690.
Moore, K.M., Yadav, R.K., Kulowski, L., Cao, H., Bloxham, J., Connerney, J.E.P., et. al. (2018). A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field, Nature, 561, 76-78, doi:10.1038/s41586-018-0468-5.
Mura, A., Adriani, A., Connerney, J.E.P., Bolton, S.J., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter, Science, doi:10.1126/science.aat1450.
Paranicas, C., Mauk, B.H., Haggerty, D.K., Clark, G., Kollmann, P., Rymer, A.M., et al. (2018). Intervals of intense energetic electron beams over Jupiter's poles. J. Geophy. Res., Space Physics, 123, 1989-1999, doi:10.1002/2017JA025106.
Rahmati, A., Larson, D.E., Cravens, T.E., Lillis, R.J., Halekas, J.S., McFadden, J.P., et al. (2018). Seasonal variability of neutral escape from Mars as derived from MAVEN pickup ion observations. J. Geophy. Res.: Planets, 123, 1192–1202, doi:10.1029/2018JE005560.
Romanelli, N., Modolo, R., Leblanc, F., Chaufray, J.-Y., Hess, S., Brain, D., et. al., (2018). Effects of the crustal magnetic fields and changes in the IMF orientation on the magnetosphere of Mars: MAVEN observations and results. Journal of Geophysical Research: Space Physics, 123(7), 5315–5333, doi:10.1029/2017JA025155.
Stallard, T.S., Burrell, A.G., Melin, H., Fletcher, L.N., Miller, S., Moore, L., et. al. (2018). Identification of Jupiter's magnetic equator through ionospheric emission, Nature Astronomy, doi:10.1038/s41550-018-0523-z.
Szalay, J.R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S.J., Clark, G., et al. (2018). In Situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research Planets, 123(11), 3061-3077, doi:10.1029/2018JE005752.
Becker, H.N., Brennan, M.J., Alexander, J.W., Guillaume, A., Brown, S., Ingersoll, A., et al. (2019). Highlights of scientific imagery from Juno's stellar reference unit. Paper presented at the EPSC-DPS Joint Meeting 2019. https://ui.adsabs.harvard.edu/abs/2019EPSC...13..107B.
Ebert, R.W., Greathouse, T.K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S.J., et al. (2019). Comparing electron energetics and UV brightness in Jupiter's Northern polar region during Juno perijove 5. Geophysical Research Letters, 46(1), 19-27, doi:10.1029/2018GL081129.
Gerard, J.C., Bonfond, B., Mauk, B.H., Gladstone, G.R., Yao, Z.H., Greathouse, T.K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research-Space Physics, 124(11), 8298-8317, doi:10.1029/2019JA026862.
Kotsiaros, S., Connerney, J.E.P., Clark, G., Allegrini, F., Gladstone, G.R., Kurth, W.S., et al., (2019). Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft, Nature Astronomy, doi:10.1038/s41550-019-0819-7.
Migliorini, A., Dinelli, B. M., Moriconi, M. L., Altieri, F., Adriani, A., Mura, A., Connerney, J. E. P., et al. (2019). H3+ characteristics in the Jupiter atmosphere as observed at limb with T Juno/JIRAM, Icarus, 329, 132-139, doi.org/10.1016/j.icarus.2019.04.003.
Moore, K.M., Cao, H., Bloxham, J., Stevenson, D.J., Connerney, J.E.P., & Bolton, S.J. (2019). Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection, Nature Astronomy, 3(8), 730-735, doi:10.1038/s41550-019-0772-5.
Allegrini, F., Gladstone, G.R., Hue, V., Clark, G., Szalay, J.R., Kurth, W.S., et al. (2020). First report of electron measurements during a Europa footprint tail crossing by Juno. Geophysical Research Letters, 47, doi: 10.1029/2020GL089732.
Allegrini, F., Mauk, B., Clark, G., Gladstone, G.R., Hue, V., Kurth, W.S., et al. (2020). Energy flux and characteristic energy of electrons over Jupiter's main auroral emission. Journal of Geophysical Research-Space Physics, 125(4), 25, doi:10.1029/2019JA027693.
Clark, G., Mauk, B.H., Kollmann, P., Szalay, J.R., Sulaiman, A.H., Gershman, D.J., et al. (2020). Energetic proton acceleration associated with Io's footprint tail. Geophysical Research Letters, 47, doi: 10.1029/2020GL090839.
Collier, M.R., Gruesbeck, J.R., Connerney, J.E.P., Joy, S.P., Hospodarsky, G.B., Roberts, A., et al. (2020). A K-means clustering analysis of the Jovian and terrestrial magnetopauses: A technique to classify global magnetospheric behavior. Journal of Geophysical Research: Planets, doi:10.1029/2019JE006366.
Connerney, J.E.P., Timmins, S., Herceg, M., & Joergensen, J. L., (2020). A Jovian magnetodisc model for the Juno era. Journal of Geophysical Research: Space Physics, 125, doi:10.1029/2020JA028138.
Giles, R.S., Greathouse, T.K., Bonfond, B., Gladstone, G.R., Kammer, J.A., Hue, V., et al. (2020). Possible transient luminous events observed in Jupiter's upper atmosphere. Journal of Geophysical Research: Planets, 125, doi:10.1029/2020JE006659.
Herceg, M., Jorgensen, P.S., Jorgensen, J.L., & Connerney, J.E.P. (2020). Thermo-elastic response of the Juno spacecraft’s solar array/magnetometer boom and its applicability to improved magnetic field investigation, Earth and Space Science, doi:10.1029/2020EA001338.
Kim, T.K., Ebert, R.W., Valek, P.W., Allegrini, F., McComas, D.J., Bagenal, F., et al. (2020). Survey of ion properties in Jupiter's plasma sheet: Juno JADE‐I observations. Journal of Geophysical Research: Space Physics, 125, doi:10.1029/2019JA027696.
Kotsiaros, S., Connerney, J.E.P., & Martos, Y. (2020). Analysis of Eddy current generation on the Juno spacecraft in Jupiter's magnetosphere, Earth and Space Science, doi:10.1029/2019EA001061.
Martos, Y.M., Imai, M., Connerney, J.E.P., Kotsiaros, S., & Kurth, W.S. (2020). Juno reveals new insights into Io-related decameter radio emissions. Journal of Geophysical Research: Planets, 125, doi:10.1029/2020JE006415.
Mauk, B.H., Allegrini, F., Bagenal, F., Bolton, S.J., Clark, G., Connerney, J.E.P., et al. (2020). Energetic neutral atoms from Jupiter's polar regions. Journal of Geophysical Research: Space Physics, 125, doi:10.1029/2020JA028697.
Mauk, B.H., Clark, G., Allegrini, F., Bagenal, F., Bolton, S.J., Connerney, J.E.P., et al (2020). Juno energetic neutral atom (ENA) remote measurements of magnetospheric injection dynamics in Jupiter's Io torus regions. Journal of Geophysical Research: Space Physics, 125, doi:10.1029/2020JA027964.
Mauk, B.H., Clark, G., Gladstone, G.R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter's polar cap and main aurora: A broad overview. Journal of Geophysical Research-Space Physics, 125(3), 25, doi:10.1029/2019JA027699.
Sulaiman, A.H., Hospodarsky, G.B., Elliott, S.S., Kurth, W.S., Gurnett, D.A., Imai, M., et al. (2020). Wave-particle interactions associated with Io's auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes. Geophysical Research Letters, 47, doi:10.1029/2020GL088432.
Szalay, J.R., Allegrini, F., Bagenal, F., Bolton, S.J., Clark, G., Connerney, J.E.P., et al. (2021). Proton outflow associated with Jupiter's auroral processes. Geophysical Research Letters, 48, doi:10.1029/2020GL091627.
Szalay, J.R., Bagenal, F., Allegrini, F., Bonfond, B., Clark, G., Connerney, J.E.P., et al., (2020). Proton acceleration by Io's Alfvénic interaction. Journal of Geophysical Research Space Physics, 125(1), 20, doi:10.1029/2019JA027314.
Vogt, M.F., Connerney, J.E.P., DiBraccio, G.A., Wilson, R.J., Thomsen, M.F., Ebert, R.W., et al., (2020). Magnetotail reconnection at Jupiter: A survey of Juno magnetic field observations. Journal of Geophysical Research: Space Physics, 125, doi:10.1029/2019JA027486.
Jorgensen, J.L., Benn, M., Connerney, J.E.P., Denver, T., Jorgensen, P.S., Andersen, A.C., & Bolton, S.J. (2020). Distribution of interplanetary dust detected by the Juno spacecraft and its contribution to the Zodiacal Light. Journal of Geophysical Research: Planets, 125, doi:10.1029/2020JE006509.
Yao, Z.H., Bonfond, B., Clark, G., Grodent, D., Dunn, W.R., Vogt, M.F., et al. (2020). Reconnection‐ and dipolarization‐driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125, doi:10.1029/2019JA027663.
Ye, S.Y., Averkamp, T.F., Kurth, W.S., Brennan, M., Bolton, S., Connerney, J.E.P., & Joergensen, J.L. (2020). Juno waves detection of dust impacts near Jupiter. Journal of Geophysical Research. Planets, 125(6), doi:10.1029/2019JE006367.
Allegrini, F., Kurth, W.S., Elliott, S.S., Saur, J., Livadiotis, G., Nicolaou, G., et al. (2021). Electron partial density and temperature over Jupiter's main auroral emission using Juno observations. Journal of Geophysical Research: Space Physics, 126, doi:10.1029/2021JA029426.
Becker, H.N., Alexander, J.W., Connerney, J.E.P., Brennan, M.J., Guillaume, A., Adumitroaie, V., et al. (2021). High latitude zones of GeV heavy ions at the inner edge of Jupiter's relativistic electron belt. Journal of Geophysical Research: Planets, 126, doi:10.1029/2020JE006772.
Ebert, R.W., Greathouse, T.K., Clark, G., Hue, V., Allegrini, F., Bagenal, F., et al. (2021). Simultaneous UV images and high-latitude particle and field measurements during an auroral dawn storm at Jupiter. Journal of Geophysical Research: Space Physics, 126, doi:10.1029/2021JA029679.
Elliott, S.S., Sulaiman, A.H., Kurth, W.S., Faden, J., Allegrini, F., Valek, P., et al. (2021). The high-latitude extension of Jupiter's Io torus: Electron densities measured by Juno waves. Journal of Geophysical Research: Space Physics, 126, doi:10.1029/2021JA029195.
Giles, R.S., Greathouse, T.K., Kammer, J.A., Gladstone, G.R., Bonfond, B., Hue, V., et al. (2021). Detection of a bolide in Jupiter's atmosphere with Juno UVS. Geophysical Research Letters, 48, doi:10.1029/2020GL091797.
Greathouse, T., Gladstone, R., Versteeg, M., Hue, V., Kammer, J., Giles, R., et al. (2021). Local time dependence of Jupiter's polar auroral emissions observed by Juno UVS. Journal of Geophysical Research: Planets, 126, doi:10.1029/2021JE006954.
Guo, R.L., Yao, Z.H., Grodent, D., Bonfond, B., Clark, G., Dunn, W.R., et al. (2021). Jupiter's double-arc aurora as a signature of magnetic reconnection: Simultaneous observations from HST and Juno. Geophysical Research Letters, 48, doi:10.1029/2021GL093964.
Hue, V., Greathouse, T.K., Gladstone, G.R., Bonfond, B., Gérard, J.-C., Vogt, M.F., et al. (2021). Detection and characterization of circular expanding UV-emissions observed in Jupiter's polar auroral regions. Journal of Geophysical Research: Space Physics, 126, doi:10.1029/2020JA028971.
Huscher, E., Bagenal, F., Wilson, R.J., Allegrini, F., Ebert, R.W., Valek, P.W., et al. (2021). Survey of Juno observations in Jupiter's plasma disk: Density. Journal of Geophysical Research: Space Physics, 126, doi:10.1029/2021JA029446.
Jorgensen, J.L., Benn, M., Connerney, J.E.P., Denver, T., Jorgensen, P.S., Andersen, A.C., & Bolton, S.J. (2021). Distribution of interplanetary dust detected by the Juno spacecraft and its contribution to the Zodiacal Light. Journal of Geophysical Research: Planets, 126, doi:10.1029/2020JE006509.
Paranicas, C., Szalay, J.R., Mauk, B.H., Clark, G., Kollmann, P., Haggerty, D.K., et al. (2021). Energy spectra near Ganymede from Juno data. Geophysical Research Letters, 48, doi:10.1029/2021GL093021.
Sarkango, Y., Slavin, J.A., Jia, X., DiBraccio, G.A., Gershman, D.J., Connerney, J.E.P., et al. (2021). Juno observations of ion-inertial scale flux ropes in the Jovian magnetotail. Geophysical Research Letters, 48, doi:10.1029/2020GL089721.
Bloxham, J., Moore, K.M., Kulowski, L., Cao, H., Yadav, R.K., Stevenson, D.J., et al. (2022). Differential rotation in Jupiter's interior revealed by simultaneous inversion for the magnetic field and zonal flux velocity. Journal of Geophysical Research: Planets, 127, doi:10.1029/2021JE007138.
Connerney, J.E.P., Timmins, S., Oliversen, R.J., Espley, J.R., Joergensen, J.L., Kotsiaros, S., et al. (2022). A new model of Jupiter's magnetic field at the completion of Juno's prime mission. Journal of Geophysical Research: Planets, 127, doi:10.1029/2021JE007055.
Hue, V., Szalay, J.R., Greathouse, T.K., Bonfond, B., Kotsiaros, S., Louis, C.K., et al. (2022). A comprehensive set of Juno in situ and remote sensing observations of the Ganymede auroral footprint. Geophysical Research Letters, 49, doi:10.1029/2021GL096994.
Kurth, W.S., Sulaiman, A.H., Hospodarsky, G.B., Menietti, J.D., Mauk, B.H., Clark, G., Allegrini, F., et al. (2022). Juno plasma wave observations at Ganymede. Geophysical Research Letters, 49, doi:10.1029/2022GL098591.
Mauk, B.H., Allegrini, F., Bagenal, F., Bolton, S.J., Clark, G., Connerney, J.E.P., et al. (2022). Loss of energetic ions comprising the ring current populations of Jupiter's middle and inner magnetosphere. Journal of Geophysical Research: Space Physics, 127, doi:10.1029/2022JA030293.
Copyright © 2018 Space Research - All Rights Reserved.
Powered by GoDaddy